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PEAKEDNESS OF WEIGHTED AVERAGES OF

JOINTLY DISTRIBUTED RANDOM VARIABLES

by

Wal Chan, Dong Ho Park, and Frank Proschan

ABSTRA~r

This note extends the Proschan (1%5) result on peakedness comparison for convex

combinations of i.i.d. random variables from a PF2 density. Now the underlying random variables

are jointly distributed from a Schur-concave density. The result permits a more refined description

of convergence in the L.aw of Larg Numbers.

OTIC fNTPS c.&
con L TVIC TA [--j

L .a

=_ I



1. VW mIN x~ j IWM rgr L MFVWIV W U

Pchn(1965) shows that:

I 1M1ma L~et f be PF2' f(t) -f(-t) for all t, X, Y..,, independently distributed with density

f. p P Prot Identical t P -Ia tP'. Then Ip;X is strictly more Pawedthan P1 X1 .

(Definition of majorization (pgp-), PP2 density, and peakedness ane presented In Section 2.)

The Law of Larg Numbers asserts, that the average of a random sample converges to the

population mean under certain conditins Roughly speakingl, Theorem 1. 1 states that a weighted

average of MA~d random variables converges mom rapidly in the case in which weights ane close

togther as compared with the case In which the weights we diverse.

In the present noe, we exted the basic univariate result to the multivariate situation in which the

underlying random variables have a joint Schur-concave density. Theorem 2.4 presents t precise

statement of the multivarlate extension.

2. '-

The theory of majorization is exploited in this section to obtain more general versions of the

result of Proschan (1965). We begin with scame definitions. The definition of peakedness was

given by Birnbaum (1948).

~niz~i2,iLet X and Y be real valued randomn variables and a and b real constants. We say

din X ismorenekea tthan Xaboutblt

P (I X-a I z t)!s P (I Y-b I z t)

for all t 2!. Inth case a =--b.we smply say that Xis more peakedthan Y.

Next we deine the ordering of maJorzation among vectors.



Let a1  ... 2! an and bl 2.- 2 b, be dewasin t t

odw oentsof d ctors a and b. We say that a mjorizs b (written a ) if

jI I.I

and

j a1 j b,  fork-I,..., -1.
jul jul

Areal valued ton f defined on Rn Is said to be a gchur-cgn fimcdon if

f (a) 9 f (b) whenever a > b.

A nonnegative function f on (- e,-) is called a P613a fun= fnnctim of 9rLM2 (PF2) if

log f is concave. If fis a PP2 function then (x) f(xi) is Schurconcave. Thus the random

vector x = (XI,...,Xn) has a Schur-concave density under the conditions of Theorem 1.1. A

function f defined on Rn is said to be sign-invariant if f(xa,...oxn) = f (xI,...JxnI). In the

following theorem, we give a peakedness comparison for random variables with a sl-invariant

Schur-concave density.

Thomw Suppose the random vactor X = (Xl,.,Xn) has a sign invariant Schur-concave

denisity. Then forallt2!0,

V (a I ,,an) - P (1 ajX s t)

is a Schur-concave function of a = (a, ..., a), a 0 for all i. Equivalently, jbXi Is mor

peaked han whnever Jb.
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WI~Ioutu of pWSify, wm may aum that T. ai 1. We fims consider the cam a - 2.

%I > b 112 2!b2 >&2. To how dth P(&XI+a2X2St) SP(bXl+b2X2 St) for t 2!0.coulder

doe Moowing diagam.

t,2t,

6 xI *b 2 12 at

11,11111111 Iwot1

3L m



Since al >bl 2 I2, both lines intersect the xl-axls in dte Interval [t,2t] and they intersect the

45 dgre li at the poin(t.t) (al. 2 = bl+b2 = 1). We must show that P(E) S P(F). Now

reflect E aros the 45 deg= line to fom the wedge E. Then P(E) a P (E') because the joint

density f is inviant under pezmuation. For k 0. the line xI - x2 a k intersects Eat the line

segment joining (t+blk,t -b2k) and (t+alk.t -a2k), and it intersects F at the line segment joining

(t+a2k,t -alk) and (t+b2k,t -blk). Note that both segments ame of equal length. But f sign-invarian

and Schur-concave implies that

f(t+blk,t -b2k) - f (t+blk , b2k -t)

S f (t+b2k , blk -0

- f (t+b2k, t -blk ).

is last fact then clearly implie that P(E)!; P(F) by conditioning on X1 - X2.

The result for n 2! 3 now follows since

P (I A, t)

E (KaX, + aA, t - 3 f...1XV"' ,x.)][EP(alX 1 4aI2 X2 ;t -aXtX,.,X)

and the conditional density f (xlx 2 I x3, ..., xn) is also Schur-concave and sign invariant.

For an example of a Schur-concave density function that is also sign-invariant, consider the

multivariate Cachy density:

f x, ..., - x4u41 )r(( I Yl)( +
4l

4



The following result is an immediate consequence of Theorm 2.4.

,3u .. . Lot X1, ..., Xn be random variables with joint Schur-concave sign-invariant

density Then it X-i is increasing in peakedness as k increases from I to n.

em.
Leta 1 = (,, ... 0),a 2 =(2, 0, ... , 0), ...,anda =( ... , ,whereeachvector

inm n

contains n components. Then a 2 a am ... k a. The result follows from Theorem 2.4.
1 2 -a

Suppose X = (X,,...,X) and Y n (Y1,...,Yn) ae independently distributed with respective

densities f and g where both f and g are Schur-concave and sign invariant. Then Theorem 2.4

nplies that Zb Xi + Y is mre peaked than I(X + Y whenever a t Thls is e

because the convolution of Schur-concave functions is Schur-concave. However, if Y1 , ... , Yn

are .. Cauchy, then the joint density g given by

(2.1) g(y 1,...,y)((+ i- a > 0,

Is not Schur-concave. In Theorm 2.6 below, we show that Y bi (Xi + Yi) is morc peaked than
isin

£ a (XI + Y1) whenever a 2 b. This result Identifies a different class of densities for which the
-b

conclusion of Thmem 2.4 holds.

5



~IZLISuppose that the radom vector X a (X1 I...Xa has a sign-invariant Schur-

concave density fE Let Y a Y1 .O. Y,. be MA~d Cauchy with joint density g as given in (2.1).

LetXmand Ybe independent, anda k b wherea0, b, 2 0for all iand 1 maum bL Then

±b1 (Xi + Y1 is more peaked than a (XI + Y).

Sincef is sipnvarant boh a Xand b Xa symetric random varable. We use the

fact that ta, Y, b1 Y, have the samne distribution as does Y1. The result now follows

Theorem 2.4 and the Lemma of Birnbaumn (1948) by noting that Y, has a symmetric and unirnodal

density.
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